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Semiclassical pseudodifferential operators

In what follows we will study “semiclassical” PDE (i.e. those with a small
parameter h, “Planck’s constant” or the semiclassical parameter). Given a linear
semiclassical differential operator

P(h) =
∑
α

aα(x)(hD)α

we can define its symbol
∑
α aα(x)ξα which is a polynomial in ξ. We want an

inverse to the map that sends operators to their symbols.

Definition (Definition 4.1.1, “Semiclassical Analysis”)

Given a ∈ C∞(T ∗Rn), we define its standard semiclassical quantization by its
action on u ∈ C∞comp(Rn):

a(x , hD)u(x) = (2πh)−n
∫∫

T∗Rn

e i〈x−y ,ξ〉/ha(x , ξ)u(y) dy dξ.

We call a(hD) a semiclassical pseudodifferential operator and a its full symbol.
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Semiclassical pseudodifferential operators
Semiclassical correspondence

Let a ∈ C∞(T ∗Rn). Then we can think of a as a classical observable, so a(x , ξ)
describes some property of particles with position x and momentum ξ.
Its quantization is a quantum observable; it acts on wavefunctions u with the
property that 〈a(hD)u(h), u(h)〉 is the expected value of the observable. As
h→ 0 and supp u(h) shrinks down to (x , ξ), 〈a(hD)u(h), u(h)〉 → (x , ξ), at least
in principle.
In particular, while it is not true that a(hD)b(hD) = (ab)(hD), we at least have:

Theorem (correspondence principle; Theorem 4.12, SCA)

Let a#b be the full symbol of ab(hD) and {·, ·} the Poisson bracket; then

a#b − ab =
h

2i
{a, b}+ O(h2)

in Schwartz seminorms, as h→ 0.

The intuition is that h{·, ·} “looks like a commutator” as h→ 0.

Aidan Backus Resonance-free regions I July 22, 2020 3 / 42



Semiclassical pseudodifferential operators
Order of a differential operator

Definition (approximately Definition 4.4.1, SCA)

The Hörmander symbol class Sk is defined to consist of those a ∈ C∞(T ∗Rn)
such that for every `, j ∈ N,

sup
(x,ξ)∈T∗Rn

|∂`x∂
j
ξa(x , ξ)| . 〈ξ〉k−j .

If a ∈ Sk we write a(hD) ∈ Ψk and say that a(hD) has order k.

Theorem (Calderón-Vaillaincourt; Theorem 4.23, SCA)

A pseudodifferential operator is bounded on L2 iff its order is ≤ 0.

Corollary (Theorem 4.18, SCA)

If a ∈ Sk and b ∈ Sm then a#b ∈ Sk+m.
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Semiclassical pseudodifferential operators
More useful facts

Theorem (sharp Gårding inequality; Theorem 4.32, SCA)

Assume that a ∈ S0 and a ≥ 0. Then if h is small enough,

〈a(hD)u, u〉 & −h||u||2L2 .

Definition (Definition 4.7.1, SCA)

A pseudodifferential operator a(hD) of order m is elliptic if one has

|a(x , ξ)| & |ξ|m.

Corollary (elliptic parametrix construction; Theorem 4.29, SCA)

Elliptic operators are invertible modulo negative-order operators.
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Basic setup

Fix n odd, V ∈ C∞comp(Rn → R), g a Riemannian metric on Rn such that gij − δij
has compact support. When working with g we will use Einstein notation.

Definition

The semiclassical Laplace-Beltrami operator on (Rn, g) is the semiclassical
pseudodifferential operator −h2∆g with symbol

|ξ|2g = g ij(x)ξiξj .

Let
P(h) = −h2∆g + V

be the semiclassical Schrödinger operator. It follows that P(h) is a semiclassical
blackbox Hamiltonian, so the resolvent R(z , h) = (P(h)− z)−1 admits a
meromorphic continuation to C.
The physical interpretation: “gij − δij has compact support” means that “gravity
is irrelevant near infinity” and “h is small” means that “quantum effects are
approximately negligible”.
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Basic setup
Resonance expansions

Question

When do solutions u of the semiclassical wave equation −h2D2
t u = P(h)u admit a

resonance expansion as h→ 0?

Recall that we proved that solutions of potential-scattered wave equations
admitted resonance expansions by constructing pole-free regions of the
Schrödinger resolvent R(h).

Question

For which half-strips [α, β]× i [−ν(h),∞) in C are there no poles of R(h) in the
semiclassical limit h→ 0?
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Basic setup
Resonance-free regions

Definition

P has a resonance-free region of size ν in the energy range [α, β] if there are
δ, h0 > 0 such that for every h < h0, every cutoff χ, and every
z ∈ [α, β]× i [−ν(h),∞),

||χR(z , h)χ||L2→L2 .χ h−δ.

If P has a resonance-free region of size ν then R(h) is holomorphic on
[α, β]× i [−ν(h),∞) and hence there are no resonances λ with
λ2 ∈ [α, β]× i [−ν(h),∞), hence the terminology.

Question

Suppose that P has a resonance-free region of size ν. What is the behavior of
ν(h) in the semiclassical limit h→ 0?
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Hamiltonian dynamics

Let
p(x , ξ) = |ξ|2g + V (x) = g ij(x)ξiξj + V (x)

be the symbol of P. We introduce the Hamilton vector field

Hp =
∑
j

∂|ξ|2

∂ξj
∂xj −

∂V (x)

∂xj
∂ξj

which gives a Hamiltonian flow t 7→ exp(tHp),

(x(t), ξ(t)) = etHp (x(0), ξ(0))

on the cotangent bundle T ∗Rn. Fix r0 > 0 such that gij(x)− δij(x) = V (x) = 0 if
|x | > r0.
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Hamiltonian dynamics
The trapped set

Recall that p is the symbol of a Hamiltonian. So if (x , ξ) ∈ T ∗Rn we view p(x , ξ)
as the (classical) energy of a particle at position x and momentum ξ. The energy
is invariant along any trajectory of Hp.

Definition

Let (x(t), ξ(t)) = etHp (x(0), ξ(0)) be a trajectory of Hp. We say that (x , ξ)
escapes at time ±∞ if |x(t)| → ∞ as t → ±∞. The tail Γ∓ is the set of
trajectories that do not escape at time ±∞.
We say that a trajectory (x , ξ) is trapped if (x , ξ) ∈ K = Γ+ ∩ Γ−.
We write Γ±J = Γ± ∩ p−1(J) and KJ = Γ+

J ∩ Γ−J for the set of trapped trajectories
in an energy range J. Here J can be a real number or a set of real numbers.
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Hamiltonian dynamics
Physical interpretation

Suppose that u(h) = u(h, 0) is a wave packet that is microlocalized to (x , ξ), in
the sense that ||u(h)||L2 = 1 and there are symbols χ(h) such that
suppχ(h) ⊂ T ∗Rn shrinks down to (x , ξ) and

(1− χ(hD, h))u(h) = O(h∞).

Thus u represents a particle that classically has position x and momentum ξ.
The dynamics of u are given by the time-dependent semiclassical Schrödinger
equation:

ih∂tu(h, t) = P(h)u(h, t).

If h is small enough, then u(h) stays microlocalized to (x , ξ) as u(h) evolves
according to the Schrödinger equation and (x , ξ) evolves according to Hp.
In particular, (x , ξ) is trapped iff u(h) is – and if u(h) is trapped we might not be
able to give u(h) a resonance expansion.
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Topology of trapped sets

Theorem

Γ± is a closed set, and if J ⊂ R is compact then KJ is compact.

KR\0 ⊆ {(x , ξ) : r(x , ξ) < r0}.
If E ∈ R and KE = ∅, then there is a δ > 0 such that K[E−δ,E+δ] = ∅.

Lemma (escape criteria)

Let (x , ξ) be a trajectory of Hp.

If r(x(0), ξ(0)) ≥ r0, ξ(0) 6= 0, and ±Hpr(x(0), ξ(0)) ≥ 0 then (x , ξ) /∈ Γ∓.
Moreover, if ±t > 0, then r(x(t), ξ(t)) > r0 and ±Hpr(x(t), ξ(t)) ≥ 0.

If (x(0), ξ(0)) /∈ Γ∓, then for every ±t large enough, r(x(t), ξ(t)) > r0 and
±Hpr(x(t), ξ(t)) ≥ 0.

Thus if r(x , ξ) > r0 and ±Hpr(x , ξ) ≥ 0 we can view (x , ξ) as having escaped to
infinity.
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Topology of trapped sets
Proof of escape criteria

Recall from Hamiltonian dynamics that H j
pr = ∂jtr .

If r > r0 then p(x , ξ) = |ξ|2δ = ξiξj . Therefore

Hpr(x , ξ) = 2
ξixi

r(x , ξ)

H2
p r(x , ξ) = 4

(x ixi )(ξjξj)− (ξkxk)2

r(x , ξ)3
.

In particular H2
p r ≥ 0 as long as ξ 6= 0, so Hpr is increasing as t →∞.

But ẋ = 2ξ and ξ̇ = 0. So if Hpr(x , ξ) ≥ 0, it follows that (x , ξ) /∈ Γ∓.
Conversely, if (x , ξ) is not a trapped trajectory, then clearly r(x , ξ) > r0 eventually
and eventually Hpr ≥ 0. This proves the lemma.
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Topology of trapped sets
Proof of theorem

Lemma

Γ− is closed.

To prove the lemma, suppose (x , ξ) /∈ Γ−. Then there is a T ≥ 0 such that
Hpr(x(T ), ξ(T )) > 0 and r(x(T ), ξ(T )) > r0. These are clearly open conditions
so if we perturb (x , ξ) this remains true.
But then the converse to escape criteria implies that the perturbation is also /∈ Γ−,
which implies that Γ− is the complement of an open set, proving this lemma.
In particular, Γ+ and hence K is closed.
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Topology of trapped sets
Proof of theorem

Lemma

KR\0 ⊆ {(x , ξ) : r(x , ξ) < r0}.

Suppose that (x , ξ) satisfies ξ 6= 0 and r(x , ξ) ≥ r0. (The condition ξ 6= 0 is
equivalent to p(x , ξ) 6= 0 since p(x , ξ) = |ξ|2δ if r(x , ξ) ≥ r0.)
If Hpr ≥ 0 then (x , ξ) /∈ Γ− by the first lemma. Otherwise Hpr < 0 so (x , ξ) /∈ Γ+.
Either way, (x , ξ) /∈ K . This proves the lemma.
As a consequence, if J ⊂ R \ 0, every (x , ξ) ∈ KJ satisfies r(x , ξ) < r0. This
implies that KJ is compact.
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Topology of trapped sets
Proof of theorem

To finish the proof of the theorem we just have to show:

Lemma

If E ∈ R and KE = ∅ then there is a δ > 0 such that K[E−δ,E+δ] = ∅.

Suppose that there are Ej → E and (xj , ξj) ∈ KEj .
If p(x , ξ) ≤ 0 then 0 ≤ |ξ|2δ ≤ −V (x) = 0 if r(x , ξ) > r0, so (x , ξ) is trapped.
Therefore E > 0, so there is a compact J ⊂ (0,∞) such that E ,Ej ∈ J.
By the previous lemma, KJ is compact, so (after choosing a subsequence if
necessary) we may assume that there is a limit (x∞, ξ∞) ∈ KJ of the (xj , ξj).
Then p(x∞, ξ∞) = E .
So (x∞, ξ∞) ∈ KE , proving the contrapositive of the lemma.

Aidan Backus Resonance-free regions I July 22, 2020 16 / 42



Convergence to trapped sets

Theorem (convergence to trapped sets)

Suppose that (x , ξ) ∈ Γ±E . Then (x , ξ)→ KE as t → ∓∞. The rate of
convergence is uniform in compact subsets of Γ±E .

Corollary

If KE = ∅ then Γ±E = ∅.

It suffices to prove the theorem for Γ−E by symmetry; since nonpositive-energy
curves are already trapped, we may assume E > 0.

Lemma (compactness)

Let (x , ξ) ∈ Γ±E , ρ(t) = r(x(t), ξ(t)). Then for every t ≥ 0,

ρ(t) ≤ max(r0, ρ(0)).
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Convergence to trapped sets
Proof of compactness

Lemma (compactness)

Let (x , ξ) ∈ Γ±E , ρ(t) = r(x(t), ξ(t)). Then for every t ≥ 0,

ρ(t) ≤ max(r0, ρ(0)).

The lemma is obviously true for t = 0. So if the lemma is false in general, then
there is a T > 0 such that ρ(T ) > r0 and ρ(T ) > ρ(0).
Since ρ is continuous and [0,T ] is compact, let t0 ∈ [0,T ] maximize ρ. Then
t0 > 0, ρ(t0) > r0, yet

Hpr(x(t0), ξ(t0)) = ρ̇(t0) = 0.

The trapping criteria give (x , ξ) /∈ Γ− since Hpr ≥ 0, a contradiction. This proves
the lemma.
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Convergence to trapped sets
Proof of theorem

Theorem

Suppose that (x , ξ) ∈ Γ−E . Then (x , ξ)→ KE as t → ∓∞.

Suppose the theorem fails. Then there are tj →∞ and a neighborhood U of KE

such that (x(tj), ξ(tj)) /∈ U.
By the compactness lemma, the trajectory (x , ξ) is bounded (and contained in the
closed set Γ−E ), so we may choose a limit point (x∞, ξ∞) ∈ Γ−E of (x(tj), ξ(tj))j .
Then (x∞, ξ∞) /∈ KE , hence (x∞, ξ∞) /∈ Γ+.
Therefore

lim
t→−∞

r(x∞(t), ξ∞(t)) =∞.

Let T be so large that r(x∞(T ), ξ∞(T )) > max(r0, r(x(0), ξ(0))).
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Convergence to trapped sets
Proof of theorem

By continuity of the flow,

(x(tj − T ), ξ(tj − T ))→ (x∞(T ), ξ∞(T )).

But T was chosen so large that

r(x∞(T ), ξ∞(T )) > max(r0, r(x(0), ξ(0))).

Thus we can find j so large that

r(x(tj − T ), ξ(tj − T )) > max(r0, r(x(0), ξ(0))).

This is a contradiction of the compactness lemma which proves the theorem.
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Liouville measures

Definition

Let (X , ω) be a symplectic manifold. Let dm be the normalized top exterior power
dm = ω∧n/n! of ω. We call m the canonical measure on X .

Definition

Suppose that E ∈ R is an energy and dp|p−1(E) 6= 0. Then we say that p−1(E ) is
a nondegenerate energy hypersurface.

Definition

Let m be the canonical measure on (T ∗Rn, dξ ∧ dx). If p−1(E ) is a
nondegenerate energy hypersurface, define a form LE by

dp ∧ dLE = dm.

We call LE the Liouville measure associated to E .
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Poincaré recurrence

Theorem

Let m be the canonical measure on T ∗Rn; then m(Γ± \ K ) = 0. Similarly, if
p−1(E ) is a nondegenerate energy hypersurface, then

LE (Γ±E \ KE ) = 0.

We can just prove this for p−1(E ) because the same proof will work for T ∗Rn, and
similarly we may just prove this for Γ−E . There is nothing to prove unless E > 0.
Since Hp preserves dξ ∧ dx , in particular Hp preserves LE . Moreover, the Poincaré
recurrence theorem says that for an invariant Radon measure, almost every
trajectory in a compact set returns to arbitrarily small balls about its initial state
infinitely many times.
So these two results, together with the stated theorem and the fact that KE is
compact, guarantee that LE -almost every trajectory in Γ±E returns to its
approximate initial state infinitely many times.
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Poincaré recurrence
Proof of theorem

By the compactness lemma, the flow Hp carries Γ−E ∩ {r ≤ r0} into itself. Let

Aj = etHp (Γ−E ∩ {r ≤ r0})

be the image of Γ−E ∩ {r ≤ r0}) under Hp at time j ∈ Z. Then Aj+1 ⊆ Aj .
We already proved that Γ−E converges to KE . Therefore

⋂
j Aj = KE and⋃

j Aj = Γ−E .
Since Aj is compact, continuity of measure implies that

LE (KE ) = lim
j→+∞

LE (Aj)

LE (Γ−E ) = lim
j→−∞

LE (Aj).

But LE is invariant under Hp, so LE (Γ−E ) = LE (KE ). This proves the theorem.

Aidan Backus Resonance-free regions I July 22, 2020 23 / 42



Resonances in strips

We want to show that given α, β,C , for every h small enough, [α, β]× i [−Ch,Ch]
has no resonances z = λ2.
Let P(h) be a semiclassical black box Hamiltonian on (M, g); then if h is small
enough, the resolvent R(h) meromorphically continues to [α, β]× i [−Ch,Ch].

Definition

Let z be a pole of R(h) and let

R(w , h) =
J∑

j=1

Bj

(w − z)j
+ Bz(w)

be the Laurent expansion of R(h) at z .
A resonant state of P(h) is an element of the image of BJ .

The space of smooth resonant states is finite-dimensional, and if u(h) is a
resonant state then P(h)u(h) = zu(h).
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Complex scaling

Fix θ ∈ (0, π/2) and r1 > r0, and Fθ a smooth, convex function on Rn with
Fθ = 0 on B(0, r1) and

Fθ(x) = tan θ|x |2/2

on B(0, 2r1)c . Let
fθ(x) = x + i∂xFθ(x)

and Γθ = fθ(Rn) be the usual totally real submanifold.
Let ∆θ be the restriction of ∆ (viewed as an holomorphic differential operator) to
Γθ. Introduce the complex-scaled operator Pθ(h) defined by Pθ = P on B(0, r1)
and Pθ(h) = −h2∆θ on B(0, r0)c . Then the resolvent

(Pθ − z)−1 : L2(Γθ)→ H2(Γθ)

is a meromorphic family of operators, and Pθ is a pseudodifferential operator.
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Complex scaling
Fiber-radial compactification

Let (M, g) be a Riemannian manifold.

Definition

The coball bundle of (M, g) is the fiber bundle

B∗M = {(x , ξ) ∈ T ∗M : g ij(x)ξiξj ≤ 1}.

One has an open dense embedding T ∗M → B∗M by

(x , ξ) 7→
(
x ,

ξ

1 + 〈ξ〉

)
.

Definition

Viewing B∗xM as a compactification of T ∗x M, we call B∗M the fiber-radial

compactification T
∗
M of T ∗M.
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Complex scaling
Principal symbols

Let M be a smooth manifold, Ψk(M) the space of kth-order semiclassical
pseudodifferential operators on M. Let Sk(M) be the space of kth-order symbols
on M, and hSk(M) those symbols which are O(h) as h→ 0.

Lemma (Theorem 14.1, SCA)

There is a unique morphism of algebras

σh :
Ψk(M)

Ψk−1(M)
→ Sk(M)

hSk−1(M)

which is the left inverse of the quantization map a 7→ a(hD) modulo hSk−1(M).

Definition

For every Q ∈ Ψ(M), σh(Q) is called the principal symbol of Q.

The symbol of a pseudodifferential operator depends on a choice of coordinates,
but not the principal symbol.
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Complex scaling
The complex-scaled symbol

Lemma (Lemma 6.8, Dyatlov-Zworski)

Let pθ = σh(Pθ), and p the symbol of P. Then:

Im pθ ≤ 0.

For every E ∈ R, {〈ξ〉−2(pθ − E ) = 0} ⊆ p−1(E ).

For every 0 < α ≤ β there is a δ > 0 such that for every E ∈ [α, β] and
x /∈ B(0, r1)c ,

|pθ(x , ξ)− E | ≥ δ〈ξ〉2.

Fix x , ξ, t0 ≤ t1, and consider the flow on T
∗Rn,

ϕt = exp(t〈ξ〉−1HRe pθ ).

If for every t ∈ [t0, t1], ϕt(x , ξ) ∈ {〈ξ〉−2 Im pθ = 0} then for every t ∈ [t0, t1],

ϕt(x , ξ) = exp(t〈ξ〉−1Hp)(x , ξ).

We omit the proofs.
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Outgoing estimates
Wavefront sets

Definition

Let a(h) be a symbol. The essential support ess supp a of a is the intersection of
all compact sets K such that for every symbol χ ∈ S0 and every Schwartz
seminorm || · ||α,β , if χ = 0 on K , then

||χa(h)||α,β = O(h∞),

if such a compact set exists. If ess supp a exists, we say that a has compact
essential support.

The operators a(hD), where a has compact essential support, are exactly those for
which there is a compactly supported symbol χ such that the operator seminorms
S ′ → S of (1− χ(hD))a(hD) are O(h∞).

Definition

The semiclassical wavefront set WFh(a(hD)) of a pseudodifferential operator
a(hD) is defined by WFh(a(hD)) = ess supp a.

Aidan Backus Resonance-free regions I July 22, 2020 29 / 42



Outgoing estimates

Lemma (Proposition 6.9, D-Z)

Let 0 < α ≤ β, C0 > 0, K = [α, β]× i [−C0h,C0h]. Let z ∈ K , u ∈ L2(Rn). Let
f = (Pθ − z)u. Then, with constants independent of u, z , h:

For every pseudodifferential operator A with compact support and
WFh(A) ∩ Γ+

[α,β] = ∅,

||Au||L2 . h−1||f ||L2 + h∞||u||L2 .

For every pseudodifferential operator B with compact support which is
elliptic in a neighborhood of K[α,β] and h sufficiently small,

||u||L2 . ||Bu||L2 + h−1||f ||L2 .

We omit the proof, which uses the previous lemma, elliptic regularity, propagation
of singularities, and the parametrix construction for elliptic operators.
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Nontrapping implies resonance-free regions

Definition (Definition 7.1.1, SCA)

The semiclassical Sobolev norm of a Schwartz function u is

||u||2Hs
h

=
∑
|α|≤s

||(hD)αu||L2 .

Note that this is just a rescaled version of the Sobolev norm.

Theorem (nontrapping estimate)

Suppose that [α, β] ⊂ (0,∞), C0 > 0 χ a cutoff, and K[α,β] = ∅. Then for every
s ≥ 0, h > 0 small, and z ∈ [α, β]× i [−C0h,C0h],

||(Pθ − z)−1||Hs
h→Hs+2

h
. h−1

||χR(z , h)χ||Hs
h→Hs+2

h
. h−1.
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Nontrapping implies resonance-free regions
Elliptic parametrix estimates

We must show that for every f ∈ C∞comp(Rn), u = (Pθ − z)−1f , that

||u||Hs+2
h

. h−1||f ||Hs
h
.

By complex scaling, Pθ − z is elliptic near momentum infinity; that is, if |ξ| � 1,
then

|pθ(x , ξ)− Re z | & |ξ|2.

Let χ be a cutoff such that (1− χ(hD))(Pθ − z) is elliptic; then there is a
parametrix T of (1− χ(hD))(Pθ − z); i.e. T is an inverse of (1− χ(hD))(Pθ − z)
modulo terms of order −∞. So

||(1− χ(hD))u||Hs+2
h

. ||f ||Hs
h

+ h∞||u||L2 .
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Nontrapping implies resonance-free regions
Semiclassical Sobolev estimates

Since χ(hD) is a frequency cutoff, ||χ(hD)u||Ht
h
. ||u||L2 for any t > 0; in

particular, the estimate

||(1− χ(hD))u||Hs+2
h

. ||f ||Hs
h

+ h∞||u||L2

implies
||u||Hs+2

h
. ||f ||Hs

h
+ ||u||L2 .

On the other hand, the previous lemma said that if K[α,β] = ∅ then for any
pseudodifferential operator B of compact support and h small,

||u||L2 . ||Bu||L2 + h−1||f ||L2 .

In particular this works if B = 0, so

||u||Hs+2
h

. h−1||f ||L2

which was to be shown.
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Nontrapping implies resonance-free regions
Cutoff estimates

Finally we must show
||χR(z , h)χ||Hs

h→Hs+2
h

. h−1.

Lemma (Theorem 4.37, D-Z)

If χ is a cutoff such that χV = V and χPθ = χP, and Im
√
ze iθ > 0,

χ(P − z)−1χ = χ(Pθ − z)−1χ.

Since
||(Pθ − z)−1||Hs

h→Hs+2
h

and we defined
√
· by Im

√
z > 0, we can just take θ small enough that

Im
√
ze iθ > 0, and r1 so large that χPθ = χP, to apply the lemma and conclude

the claimed result.
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Semiclassical defect measures

Lemma (Thm 5.2, SCA)

Suppose that u(h) are functions, ||u(h)||L2 = 1. Let a ∈ S0(Rn). Then there is a
positive Radon measure µ ∈ Ccomp(T ∗Rn)∗+ and a sequence hj → 0 such that

lim
j→∞
〈a(hjD)u(hj), u(hj)〉 =

∫
T∗Rn

a dµ.

Definition

The measure µ is called the semiclassical defect measure that u(h) converges to.

Example (Example 5.1.1, SCA)

If u(h) is microlocalized to (x , ξ) then the unique semiclassical measure of u is
δ(x,ξ).
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Semiclassical defect measures
Proof of lemma; quasimodes

To prove the existence of semiclassical defect measures, let {ak}k ⊂ S0 be dense
in Ccomp(T ∗Rn). By the Calderón-Vaillaincourt theorem and the
Cantor–Arzelà–Ascoli diagonal argument, we can find hj → 0 such that∫

T∗Rn

ak dµ = lim
j→∞
〈ak(hjD)u(hj), u(hj)〉

exists and is O(||ak ||L∞). By the Riesz-Markov theorem and the sharp Gårding
inequality, µ is a positive Radon measure, which proves the lemma.

Definition

An ε-quasimode for a semiclassical pseudodifferential operator Q is a family of
functions u(h) with ||u(h)||L2 = 1 and ||Q(h)u(h)||L2 < ε.

By the lemma, every o(h)-quasimode converges to a (possibly nonunique)
semiclassical defect measure.
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Semiclassical defect measures
Defect measures of resonant states

Theorem (defect measures for resonant states)

Fix an energy region 0 < α ≤ E ≤ β <∞ and C0 > 0. Let
K = [α, β]× i [−C0h,C0h]. Suppose that z(h) ∈ K and z(h)→ E . Let u(h) be a
o(h)-quasimode for the operator Pθ(h)− z(h). Choose hj → 0 such that
Im z(hj)/hj converges, say to ν, and that u(hj) converges to a semiclassical defect
measure µ. Then:

suppµ ⊆ Γ+
E .

If U ⊇ KE is open, then µ(U) > 0.

If U ⊆ {r ≤ r1} is open and t ≥ 0, then

µ(e−tHp (U)) = e2νtµ(U).

Here the sequence hj exists by compactness of [−C0h,C0h] and the fact that the
proof of the previous lemma allows us to restrict to a countable set of h’s.
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Semiclassical defect measures
Interpretation of theorem

Suppose that E ∈ (α, β).
Let zj → E be a sequence of resonances of P and suppose that there are uj such
that

Pθ(hj)uj = zjuj .

These uj must exist, by general results about blackbox complex scaling, and we
can think of them as perturbations of resonant states.
Passing to a subsequence we may assume that the uj meet the hypotheses of the
above theorem, so converge to a semiclassical defect measure µ. It follows that
K[α,β] is nonempty and hence P has trapping at the energy scale [α, β], since
µ(K[α,β]) > 0.
Thus this theorem is a partial converse to the previous theorem, which said that if
P satisfied the nontrapping condition K[α,β] = ∅, then P had a resonance-free
region at the energy scale [α, β].

Aidan Backus Resonance-free regions I July 22, 2020 38 / 42



Semiclassical defect measures
Proof of support properties

Lemma

suppµ ⊆ Γ+
E .

Lemma (Thm 5.3, SCA)

Let q be a real symbol, let u(h) be a o(1)-quasimode of q(hD), and let µ be a
semiclassical defect measure of u. Then suppµ ⊆ q−1(0).

We proved that p−1
θ (E ) ⊆ p−1(E ) so it follows that µ(p 6= E ) = 0.

If a(h) ∈ C∞comp(T ∗Rn) and ess supp a ∩ Γ+ = ∅, then we proved that

||a(hD)u||L2 . h−1||(Pθ(h)− z(h))u(h)||L2 + h∞.

The right-hand side vanishes since u(h) is a o(h)-quasimode of Pθ(h)− z(h), so∫
T∗Rn

a dµ = lim
h→0
〈a(hD)u(h), u(h)〉 = 0

so µ(T ∗Rn \ Γ+) = 0. This proves the lemma.
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Semiclassical defect measures
Proof that trapped sets are nontrivial

Lemma

For every open U ⊇ KE , µ(U) > 0.

Let b(h) ∈ C∞comp(T ∗Rn) and suppose that b(hD) is elliptic in a neighborhood of
KE and that ess supp b ⊆ U. We proved the ellipticity estimates

||b(hD)u(h)||L2 & ||u(h)||L2 − h−1||(Pθ(h)− z(h))u(h)||L2 & 1

uniformly in h. Taking the limit of ||b(hD)u(h)||2L2 = 〈b(hD)∗b(hD)u(h), u(h)〉,
we conclude that

||b(h)||2L2(µ) =

∫
T∗Rn

|b(h)|2 dµ & 1.

But b(h) = O(h∞) off U, so this is only possible if µ(U) > 0. This proves the
lemma.
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Semiclassical defect measures
Proof of ergodic properties

Lemma

If U ⊆ {r ≤ r1} is open, t ≥ 0, Im z(h)/h→ ν, then µ(e−tHp (U)) = e2νtµ(U).

Let χ be a cutoff which neglects complex scaling, thus χFθ = 0 (so χPθ = χP).
Since u(h) is a o(h)-quasimode of Pθ − z , it is also a o(h)-quasimode of
χ(Pθ − z).

Lemma (Thm E.44, D-Z)

Let Q ∈ Ψ(Rn), q = σh(Q) real, and µ the semiclassical defect measure of a
o(h)-quasimode of Q. Let ImQ = (Q − Q∗)/2i and a ∈ C∞comp(T ∗Rn); then∫

T∗M

Hqa dµ = −2〈a, σh(h−1 ImQ)〉L2(µ).

This result generalizes Thm 5.4, SCA, which says that if q is a real symbol then
the semiclassical defect measure of a o(h)-quasimode of q(hD) is Hq-invariant.
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Semiclassical defect measures
Proof of ergodic properties II

We apply the lemma with q = σh(P(h)− Re z(h)− iνh).
Here

||q(hD)u(h)||L2 = || Im z(h)− iνh||L2→L2 + o(h) = o(h)

since u(h) is a o(h)-quasimode of P(h)− z(h) and Im z(h)/h→ ν.
Thus for every a ∈ C∞comp(B(0, r1)) (which is µ-almost preserved by Hp since Hp

sends Γ+
E ∩ B(0, r1) to itself, and µ is supported in Γ+

E ),∫
Γ+
E

Hp

2ν
a dµ =

∫
Γ+
E

a dµ.

But this means that ∫
Γ+
E

a ◦ etHp dµ = e2ν

∫
Γ+
E

a dµ.

Taking a→ 1U for some U open we see the lemma and hence the theorem.
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